/* * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "AffineTransform.h" #include "IntRect.h" #include "FloatRect.h" #include "cairo.h" namespace WebCore { static const double deg2rad = 0.017453292519943295769; // pi/180 AffineTransform::AffineTransform() { cairo_matrix_init_identity(&m_transform); } AffineTransform::AffineTransform(double a, double b, double c, double d, double tx, double ty) { cairo_matrix_init(&m_transform, a, c, b, d, tx, ty); } AffineTransform::AffineTransform(const cairo_matrix_t &matrix) { m_transform = matrix; } void AffineTransform::setMatrix(double a, double b, double c, double d, double tx, double ty) { cairo_matrix_init(&m_transform, a, c, b, d, tx, ty); } void AffineTransform::map(double x, double y, double* x2, double* y2) const { *x2 = x; *y2 = y; cairo_matrix_transform_point(&m_transform, x2, y2); } IntRect AffineTransform::mapRect(const IntRect &rect) const { FloatRect floatRect(rect); FloatRect enclosingFloatRect = this->mapRect(floatRect); return enclosingIntRect(enclosingFloatRect); } FloatRect AffineTransform::mapRect(const FloatRect &rect) const { double rectMinX = rect.x(); double rectMaxX = rect.x() + rect.width(); double rectMinY = rect.y(); double rectMaxY = rect.y() + rect.height(); double px = rectMinX; double py = rectMinY; cairo_matrix_transform_point(&m_transform, &px, &py); double enclosingRectMinX = px; double enclosingRectMinY = py; double enclosingRectMaxX = px; double enclosingRectMaxY = py; px = rectMaxX; py = rectMinY; cairo_matrix_transform_point(&m_transform, &px, &py); if (px < enclosingRectMinX) enclosingRectMinX = px; else if (px > enclosingRectMaxX) enclosingRectMaxX = px; if (py < enclosingRectMinY) enclosingRectMinY = py; else if (py > enclosingRectMaxY) enclosingRectMaxY = py; px = rectMaxX; py = rectMaxY; cairo_matrix_transform_point(&m_transform, &px, &py); if (px < enclosingRectMinX) enclosingRectMinX = px; else if (px > enclosingRectMaxX) enclosingRectMaxX = px; if (py < enclosingRectMinY) enclosingRectMinY = py; else if (py > enclosingRectMaxY) enclosingRectMaxY = py; px = rectMinX; py = rectMaxY; cairo_matrix_transform_point(&m_transform, &px, &py); if (px < enclosingRectMinX) enclosingRectMinX = px; else if (px > enclosingRectMaxX) enclosingRectMaxX = px; if (py < enclosingRectMinY) enclosingRectMinY = py; else if (py > enclosingRectMaxY) enclosingRectMaxY = py; double enclosingRectWidth = enclosingRectMaxX - enclosingRectMinX; double enclosingRectHeight = enclosingRectMaxY - enclosingRectMinY; return FloatRect(enclosingRectMinX, enclosingRectMinY, enclosingRectWidth, enclosingRectHeight); } bool AffineTransform::isIdentity() const { return ((m_transform.xx == 1) && (m_transform.yy == 1) && (m_transform.xy == 0) && (m_transform.yx == 0) && (m_transform.x0 == 0) && (m_transform.y0 == 0)); } double AffineTransform::a() const { return m_transform.xx; } void AffineTransform::setA(double a) { m_transform.xx = a; } double AffineTransform::b() const { return m_transform.xy; } void AffineTransform::setB(double b) { m_transform.xy = b; } double AffineTransform::c() const { return m_transform.yx; } void AffineTransform::setC(double c) { m_transform.yx = c; } double AffineTransform::d() const { return m_transform.yy; } void AffineTransform::setD(double d) { m_transform.yy = d; } double AffineTransform::e() const { return m_transform.x0; } void AffineTransform::setE(double e) { m_transform.x0 = e; } double AffineTransform::f() const { return m_transform.y0; } void AffineTransform::setF(double f) { m_transform.y0 = f; } void AffineTransform::reset() { cairo_matrix_init_identity(&m_transform); } AffineTransform &AffineTransform::scale(double sx, double sy) { cairo_matrix_scale(&m_transform, sx, sy); return *this; } AffineTransform &AffineTransform::rotate(double d) { cairo_matrix_rotate(&m_transform, d * deg2rad); return *this; } AffineTransform &AffineTransform::translate(double tx, double ty) { cairo_matrix_translate(&m_transform, tx, ty); return *this; } AffineTransform &AffineTransform::shear(double sx, double sy) { cairo_matrix_t shear; cairo_matrix_init(&shear, 1, sx, sy, 1, 0, 0); cairo_matrix_t result; cairo_matrix_multiply(&result, &shear, &m_transform); m_transform = result; return *this; } double AffineTransform::det() const { return m_transform.xx * m_transform.yy - m_transform.xy * m_transform.yx; } AffineTransform AffineTransform::inverse() const { if (!isInvertible()) return AffineTransform(); cairo_matrix_t result = m_transform; cairo_matrix_invert(&result); return AffineTransform(result); } AffineTransform::operator cairo_matrix_t() const { return m_transform; } bool AffineTransform::operator== (const AffineTransform &m2) const { return ((m_transform.xx == m2.m_transform.xx) && (m_transform.yy == m2.m_transform.yy) && (m_transform.xy == m2.m_transform.xy) && (m_transform.yx == m2.m_transform.yx) && (m_transform.x0 == m2.m_transform.x0) && (m_transform.y0 == m2.m_transform.y0)); } AffineTransform &AffineTransform::operator*= (const AffineTransform &m2) { cairo_matrix_t result; cairo_matrix_multiply(&result, &m_transform, &m2.m_transform); m_transform = result; return *this; } AffineTransform AffineTransform::operator* (const AffineTransform &m2) { cairo_matrix_t result; cairo_matrix_multiply(&result, &m_transform, &m2.m_transform); return result; } } // vim: ts=4 sw=4 et