// -*- c-basic-offset: 2 -*- /* * This file is part of the KDE libraries * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) * Copyright (C) 2004, 2005, 2006, 2007 Apple Inc. All rights reserved. * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "ustring.h" #include "JSLock.h" #include "collector.h" #include "dtoa.h" #include "function.h" #include "identifier.h" #include "operations.h" #include #include #include #include #include #include #include #if HAVE(STRING_H) #include #endif #if HAVE(STRINGS_H) #include #endif using std::max; using std::min; namespace KJS { extern const double NaN; extern const double Inf; static const size_t overflowIndicator = std::numeric_limits::max(); static const size_t maxUChars = std::numeric_limits::max() / sizeof(UChar); static inline UChar* allocChars(size_t length) { ASSERT(length); if (length > maxUChars) return 0; return static_cast(fastMalloc(sizeof(UChar) * length)); } static inline UChar* reallocChars(UChar* buffer, size_t length) { ASSERT(length); if (length > maxUChars) return 0; return static_cast(fastRealloc(buffer, sizeof(UChar) * length)); } // we'd rather not do shared substring append for small strings, since // this runs too much risk of a tiny initial string holding down a // huge buffer. This is also tuned to match the extra cost size, so we // don't ever share a buffer that wouldn't be over the extra cost // threshold already. // FIXME: this should be size_t but that would cause warnings until we // fix UString sizes to be size_t instad of int static const int minShareSize = Collector::minExtraCostSize / sizeof(UChar); COMPILE_ASSERT(sizeof(UChar) == 2, uchar_is_2_bytes) CString::CString(const char *c) { length = strlen(c); data = new char[length+1]; memcpy(data, c, length + 1); } CString::CString(const char *c, size_t len) { length = len; data = new char[len+1]; memcpy(data, c, len); data[len] = 0; } CString::CString(const CString &b) { length = b.length; if (b.data) { data = new char[length+1]; memcpy(data, b.data, length + 1); } else data = 0; } CString::~CString() { delete [] data; } CString &CString::append(const CString &t) { char *n; n = new char[length+t.length+1]; if (length) memcpy(n, data, length); if (t.length) memcpy(n+length, t.data, t.length); length += t.length; n[length] = 0; delete [] data; data = n; return *this; } CString &CString::operator=(const char *c) { if (data) delete [] data; length = strlen(c); data = new char[length+1]; memcpy(data, c, length + 1); return *this; } CString &CString::operator=(const CString &str) { if (this == &str) return *this; if (data) delete [] data; length = str.length; if (str.data) { data = new char[length + 1]; memcpy(data, str.data, length + 1); } else data = 0; return *this; } bool operator==(const CString& c1, const CString& c2) { size_t len = c1.size(); return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0); } // Hack here to avoid a global with a constructor; point to an unsigned short instead of a UChar. static unsigned short almostUChar; UString::Rep UString::Rep::null = { 0, 0, 1, 0, 0, &UString::Rep::null, 0, 0, 0, 0, 0 }; UString::Rep UString::Rep::empty = { 0, 0, 1, 0, 0, &UString::Rep::empty, reinterpret_cast(&almostUChar), 0, 0, 0, 0 }; const int normalStatBufferSize = 4096; static char *statBuffer = 0; static int statBufferSize = 0; PassRefPtr UString::Rep::createCopying(const UChar *d, int l) { ASSERT(JSLock::lockCount() > 0); int sizeInBytes = l * sizeof(UChar); UChar *copyD = static_cast(fastMalloc(sizeInBytes)); memcpy(copyD, d, sizeInBytes); return create(copyD, l); } PassRefPtr UString::Rep::create(UChar *d, int l) { ASSERT(JSLock::lockCount() > 0); Rep* r = new Rep; r->offset = 0; r->len = l; r->rc = 1; r->_hash = 0; r->isIdentifier = 0; r->baseString = r; r->buf = d; r->usedCapacity = l; r->capacity = l; r->usedPreCapacity = 0; r->preCapacity = 0; // steal the single reference this Rep was created with return adoptRef(r); } PassRefPtr UString::Rep::create(PassRefPtr base, int offset, int length) { ASSERT(JSLock::lockCount() > 0); ASSERT(base); int baseOffset = base->offset; base = base->baseString; assert(-(offset + baseOffset) <= base->usedPreCapacity); assert(offset + baseOffset + length <= base->usedCapacity); Rep *r = new Rep; r->offset = baseOffset + offset; r->len = length; r->rc = 1; r->_hash = 0; r->isIdentifier = 0; r->baseString = base.releaseRef(); r->buf = 0; r->usedCapacity = 0; r->capacity = 0; r->usedPreCapacity = 0; r->preCapacity = 0; // steal the single reference this Rep was created with return adoptRef(r); } void UString::Rep::destroy() { ASSERT(JSLock::lockCount() > 0); if (isIdentifier) Identifier::remove(this); if (baseString != this) { baseString->deref(); } else { fastFree(buf); } delete this; } // Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's // or anything like that. const unsigned PHI = 0x9e3779b9U; // Paul Hsieh's SuperFastHash // http://www.azillionmonkeys.com/qed/hash.html unsigned UString::Rep::computeHash(const UChar *s, int len) { unsigned l = len; uint32_t hash = PHI; uint32_t tmp; int rem = l & 1; l >>= 1; // Main loop for (; l > 0; l--) { hash += s[0].uc; tmp = (s[1].uc << 11) ^ hash; hash = (hash << 16) ^ tmp; s += 2; hash += hash >> 11; } // Handle end case if (rem) { hash += s[0].uc; hash ^= hash << 11; hash += hash >> 17; } // Force "avalanching" of final 127 bits hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 2; hash += hash >> 15; hash ^= hash << 10; // this avoids ever returning a hash code of 0, since that is used to // signal "hash not computed yet", using a value that is likely to be // effectively the same as 0 when the low bits are masked if (hash == 0) hash = 0x80000000; return hash; } // Paul Hsieh's SuperFastHash // http://www.azillionmonkeys.com/qed/hash.html unsigned UString::Rep::computeHash(const char *s) { // This hash is designed to work on 16-bit chunks at a time. But since the normal case // (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they // were 16-bit chunks, which should give matching results uint32_t hash = PHI; uint32_t tmp; size_t l = strlen(s); size_t rem = l & 1; l >>= 1; // Main loop for (; l > 0; l--) { hash += (unsigned char)s[0]; tmp = ((unsigned char)s[1] << 11) ^ hash; hash = (hash << 16) ^ tmp; s += 2; hash += hash >> 11; } // Handle end case if (rem) { hash += (unsigned char)s[0]; hash ^= hash << 11; hash += hash >> 17; } // Force "avalanching" of final 127 bits hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 2; hash += hash >> 15; hash ^= hash << 10; // this avoids ever returning a hash code of 0, since that is used to // signal "hash not computed yet", using a value that is likely to be // effectively the same as 0 when the low bits are masked if (hash == 0) hash = 0x80000000; return hash; } // put these early so they can be inlined inline size_t UString::expandedSize(size_t size, size_t otherSize) const { // Do the size calculation in two parts, returning overflowIndicator if // we overflow the maximum value that we can handle. if (size > maxUChars) return overflowIndicator; size_t expandedSize = ((size + 10) / 10 * 11) + 1; if (maxUChars - expandedSize < otherSize) return overflowIndicator; return expandedSize + otherSize; } inline int UString::usedCapacity() const { return m_rep->baseString->usedCapacity; } inline int UString::usedPreCapacity() const { return m_rep->baseString->usedPreCapacity; } void UString::expandCapacity(int requiredLength) { Rep* r = m_rep->baseString; if (requiredLength > r->capacity) { size_t newCapacity = expandedSize(requiredLength, r->preCapacity); UChar* oldBuf = r->buf; r->buf = reallocChars(r->buf, newCapacity); if (!r->buf) { r->buf = oldBuf; m_rep = &Rep::null; return; } r->capacity = newCapacity - r->preCapacity; } if (requiredLength > r->usedCapacity) { r->usedCapacity = requiredLength; } } void UString::expandPreCapacity(int requiredPreCap) { Rep* r = m_rep->baseString; if (requiredPreCap > r->preCapacity) { size_t newCapacity = expandedSize(requiredPreCap, r->capacity); int delta = newCapacity - r->capacity - r->preCapacity; UChar* newBuf = allocChars(newCapacity); if (!newBuf) { m_rep = &Rep::null; return; } memcpy(newBuf + delta, r->buf, (r->capacity + r->preCapacity) * sizeof(UChar)); fastFree(r->buf); r->buf = newBuf; r->preCapacity = newCapacity - r->capacity; } if (requiredPreCap > r->usedPreCapacity) { r->usedPreCapacity = requiredPreCap; } } UString::UString(const char *c) { if (!c) { m_rep = &Rep::null; return; } size_t length = strlen(c); if (length == 0) { m_rep = &Rep::empty; return; } UChar *d = allocChars(length); if (!d) m_rep = &Rep::null; else { for (size_t i = 0; i < length; i++) d[i].uc = c[i]; m_rep = Rep::create(d, static_cast(length)); } } UString::UString(const UChar *c, int length) { if (length == 0) m_rep = &Rep::empty; else m_rep = Rep::createCopying(c, length); } UString::UString(UChar *c, int length, bool copy) { if (length == 0) m_rep = &Rep::empty; else if (copy) m_rep = Rep::createCopying(c, length); else m_rep = Rep::create(c, length); } UString::UString(const UString &a, const UString &b) { int aSize = a.size(); int aOffset = a.m_rep->offset; int bSize = b.size(); int bOffset = b.m_rep->offset; int length = aSize + bSize; // possible cases: if (aSize == 0) { // a is empty m_rep = b.m_rep; } else if (bSize == 0) { // b is empty m_rep = a.m_rep; } else if (aOffset + aSize == a.usedCapacity() && aSize >= minShareSize && 4 * aSize >= bSize && (-bOffset != b.usedPreCapacity() || aSize >= bSize)) { // - a reaches the end of its buffer so it qualifies for shared append // - also, it's at least a quarter the length of b - appending to a much shorter // string does more harm than good // - however, if b qualifies for prepend and is longer than a, we'd rather prepend UString x(a); x.expandCapacity(aOffset + length); if (a.data() && x.data()) { memcpy(const_cast(a.data() + aSize), b.data(), bSize * sizeof(UChar)); m_rep = Rep::create(a.m_rep, 0, length); } else m_rep = &Rep::null; } else if (-bOffset == b.usedPreCapacity() && bSize >= minShareSize && 4 * bSize >= aSize) { // - b reaches the beginning of its buffer so it qualifies for shared prepend // - also, it's at least a quarter the length of a - prepending to a much shorter // string does more harm than good UString y(b); y.expandPreCapacity(-bOffset + aSize); if (b.data() && y.data()) { memcpy(const_cast(b.data() - aSize), a.data(), aSize * sizeof(UChar)); m_rep = Rep::create(b.m_rep, -aSize, length); } else m_rep = &Rep::null; } else { // a does not qualify for append, and b does not qualify for prepend, gotta make a whole new string size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) m_rep = &Rep::null; else { memcpy(d, a.data(), aSize * sizeof(UChar)); memcpy(d + aSize, b.data(), bSize * sizeof(UChar)); m_rep = Rep::create(d, length); m_rep->capacity = newCapacity; } } } const UString& UString::null() { static UString* n = new UString; return *n; } UString UString::from(int i) { UChar buf[1 + sizeof(i) * 3]; UChar *end = buf + sizeof(buf) / sizeof(UChar); UChar *p = end; if (i == 0) { *--p = '0'; } else if (i == INT_MIN) { char minBuf[1 + sizeof(i) * 3]; sprintf(minBuf, "%d", INT_MIN); return UString(minBuf); } else { bool negative = false; if (i < 0) { negative = true; i = -i; } while (i) { *--p = (unsigned short)((i % 10) + '0'); i /= 10; } if (negative) { *--p = '-'; } } return UString(p, static_cast(end - p)); } UString UString::from(unsigned int u) { UChar buf[sizeof(u) * 3]; UChar *end = buf + sizeof(buf) / sizeof(UChar); UChar *p = end; if (u == 0) { *--p = '0'; } else { while (u) { *--p = (unsigned short)((u % 10) + '0'); u /= 10; } } return UString(p, static_cast(end - p)); } UString UString::from(long l) { UChar buf[1 + sizeof(l) * 3]; UChar *end = buf + sizeof(buf) / sizeof(UChar); UChar *p = end; if (l == 0) { *--p = '0'; } else if (l == LONG_MIN) { char minBuf[1 + sizeof(l) * 3]; sprintf(minBuf, "%ld", LONG_MIN); return UString(minBuf); } else { bool negative = false; if (l < 0) { negative = true; l = -l; } while (l) { *--p = (unsigned short)((l % 10) + '0'); l /= 10; } if (negative) { *--p = '-'; } } return UString(p, static_cast(end - p)); } UString UString::from(double d) { // avoid ever printing -NaN, in JS conceptually there is only one NaN value if (isNaN(d)) return "NaN"; char buf[80]; int decimalPoint; int sign; char *result = kjs_dtoa(d, 0, 0, &decimalPoint, &sign, NULL); int length = static_cast(strlen(result)); int i = 0; if (sign) { buf[i++] = '-'; } if (decimalPoint <= 0 && decimalPoint > -6) { buf[i++] = '0'; buf[i++] = '.'; for (int j = decimalPoint; j < 0; j++) { buf[i++] = '0'; } strcpy(buf + i, result); } else if (decimalPoint <= 21 && decimalPoint > 0) { if (length <= decimalPoint) { strcpy(buf + i, result); i += length; for (int j = 0; j < decimalPoint - length; j++) { buf[i++] = '0'; } buf[i] = '\0'; } else { strncpy(buf + i, result, decimalPoint); i += decimalPoint; buf[i++] = '.'; strcpy(buf + i, result + decimalPoint); } } else if (result[0] < '0' || result[0] > '9') { strcpy(buf + i, result); } else { buf[i++] = result[0]; if (length > 1) { buf[i++] = '.'; strcpy(buf + i, result + 1); i += length - 1; } buf[i++] = 'e'; buf[i++] = (decimalPoint >= 0) ? '+' : '-'; // decimalPoint can't be more than 3 digits decimal given the // nature of float representation int exponential = decimalPoint - 1; if (exponential < 0) exponential = -exponential; if (exponential >= 100) buf[i++] = static_cast('0' + exponential / 100); if (exponential >= 10) buf[i++] = static_cast('0' + (exponential % 100) / 10); buf[i++] = static_cast('0' + exponential % 10); buf[i++] = '\0'; } kjs_freedtoa(result); return UString(buf); } UString UString::spliceSubstringsWithSeparators(const Range* substringRanges, int rangeCount, const UString* separators, int separatorCount) const { if (rangeCount == 1 && separatorCount == 0) { int thisSize = size(); int position = substringRanges[0].position; int length = substringRanges[0].length; if (position <= 0 && length >= thisSize) return *this; return UString::Rep::create(m_rep, max(0, position), min(thisSize, length)); } int totalLength = 0; for (int i = 0; i < rangeCount; i++) totalLength += substringRanges[i].length; for (int i = 0; i < separatorCount; i++) totalLength += separators[i].size(); if (totalLength == 0) return ""; UChar* buffer = allocChars(totalLength); if (!buffer) return null(); int maxCount = max(rangeCount, separatorCount); int bufferPos = 0; for (int i = 0; i < maxCount; i++) { if (i < rangeCount) { memcpy(buffer + bufferPos, data() + substringRanges[i].position, substringRanges[i].length * sizeof(UChar)); bufferPos += substringRanges[i].length; } if (i < separatorCount) { memcpy(buffer + bufferPos, separators[i].data(), separators[i].size() * sizeof(UChar)); bufferPos += separators[i].size(); } } return UString::Rep::create(buffer, totalLength); } UString &UString::append(const UString &t) { int thisSize = size(); int thisOffset = m_rep->offset; int tSize = t.size(); int length = thisSize + tSize; // possible cases: if (thisSize == 0) { // this is empty *this = t; } else if (tSize == 0) { // t is empty } else if (m_rep->baseIsSelf() && m_rep->rc == 1) { // this is direct and has refcount of 1 (so we can just alter it directly) expandCapacity(thisOffset + length); if (data()) { memcpy(const_cast(data() + thisSize), t.data(), tSize * sizeof(UChar)); m_rep->len = length; m_rep->_hash = 0; } } else if (thisOffset + thisSize == usedCapacity() && thisSize >= minShareSize) { // this reaches the end of the buffer - extend it if it's long enough to append to expandCapacity(thisOffset + length); if (data()) { memcpy(const_cast(data() + thisSize), t.data(), tSize * sizeof(UChar)); m_rep = Rep::create(m_rep, 0, length); } } else { // this is shared with someone using more capacity, gotta make a whole new string size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) m_rep = &Rep::null; else { memcpy(d, data(), thisSize * sizeof(UChar)); memcpy(const_cast(d + thisSize), t.data(), tSize * sizeof(UChar)); m_rep = Rep::create(d, length); m_rep->capacity = newCapacity; } } return *this; } UString &UString::append(const char *t) { int thisSize = size(); int thisOffset = m_rep->offset; int tSize = static_cast(strlen(t)); int length = thisSize + tSize; // possible cases: if (thisSize == 0) { // this is empty *this = t; } else if (tSize == 0) { // t is empty, we'll just return *this below. } else if (m_rep->baseIsSelf() && m_rep->rc == 1) { // this is direct and has refcount of 1 (so we can just alter it directly) expandCapacity(thisOffset + length); UChar *d = const_cast(data()); if (d) { for (int i = 0; i < tSize; ++i) d[thisSize + i] = t[i]; m_rep->len = length; m_rep->_hash = 0; } } else if (thisOffset + thisSize == usedCapacity() && thisSize >= minShareSize) { // this string reaches the end of the buffer - extend it expandCapacity(thisOffset + length); UChar *d = const_cast(data()); if (d) { for (int i = 0; i < tSize; ++i) d[thisSize + i] = t[i]; m_rep = Rep::create(m_rep, 0, length); } } else { // this is shared with someone using more capacity, gotta make a whole new string size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) m_rep = &Rep::null; else { memcpy(d, data(), thisSize * sizeof(UChar)); for (int i = 0; i < tSize; ++i) d[thisSize + i] = t[i]; m_rep = Rep::create(d, length); m_rep->capacity = newCapacity; } } return *this; } UString &UString::append(unsigned short c) { int thisOffset = m_rep->offset; int length = size(); // possible cases: if (length == 0) { // this is empty - must make a new m_rep because we don't want to pollute the shared empty one size_t newCapacity = expandedSize(1, 0); UChar* d = allocChars(newCapacity); if (!d) m_rep = &Rep::null; else { d[0] = c; m_rep = Rep::create(d, 1); m_rep->capacity = newCapacity; } } else if (m_rep->baseIsSelf() && m_rep->rc == 1) { // this is direct and has refcount of 1 (so we can just alter it directly) expandCapacity(thisOffset + length + 1); UChar *d = const_cast(data()); if (d) { d[length] = c; m_rep->len = length + 1; m_rep->_hash = 0; } } else if (thisOffset + length == usedCapacity() && length >= minShareSize) { // this reaches the end of the string - extend it and share expandCapacity(thisOffset + length + 1); UChar *d = const_cast(data()); if (d) { d[length] = c; m_rep = Rep::create(m_rep, 0, length + 1); } } else { // this is shared with someone using more capacity, gotta make a whole new string size_t newCapacity = expandedSize(length + 1, 0); UChar* d = allocChars(newCapacity); if (!d) m_rep = &Rep::null; else { memcpy(d, data(), length * sizeof(UChar)); d[length] = c; m_rep = Rep::create(d, length + 1); m_rep->capacity = newCapacity; } } return *this; } CString UString::cstring() const { return ascii(); } char *UString::ascii() const { // Never make the buffer smaller than normalStatBufferSize. // Thus we almost never need to reallocate. int length = size(); int neededSize = length + 1; if (neededSize < normalStatBufferSize) { neededSize = normalStatBufferSize; } if (neededSize != statBufferSize) { delete [] statBuffer; statBuffer = new char [neededSize]; statBufferSize = neededSize; } const UChar *p = data(); char *q = statBuffer; const UChar *limit = p + length; while (p != limit) { *q = static_cast(p->uc); ++p; ++q; } *q = '\0'; return statBuffer; } #ifdef KJS_DEBUG_MEM void UString::globalClear() { delete [] statBuffer; statBuffer = 0; statBufferSize = 0; } #endif UString &UString::operator=(const char *c) { if (!c) { m_rep = &Rep::null; return *this; } int l = static_cast(strlen(c)); if (!l) { m_rep = &Rep::empty; return *this; } UChar *d; if (m_rep->rc == 1 && l <= m_rep->capacity && m_rep->baseIsSelf() && m_rep->offset == 0 && m_rep->preCapacity == 0) { d = m_rep->buf; m_rep->_hash = 0; m_rep->len = l; } else { d = allocChars(l); if (!d) { m_rep = &Rep::null; return *this; } m_rep = Rep::create(d, l); } for (int i = 0; i < l; i++) d[i].uc = c[i]; return *this; } bool UString::is8Bit() const { const UChar *u = data(); const UChar *limit = u + size(); while (u < limit) { if (u->uc > 0xFF) return false; ++u; } return true; } const UChar UString::operator[](int pos) const { if (pos >= size()) return '\0'; return data()[pos]; } double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const { double d; // FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk // after the number, so is8Bit is too strict a check. if (!is8Bit()) return NaN; const char *c = ascii(); // skip leading white space while (isspace(*c)) c++; // empty string ? if (*c == '\0') return tolerateEmptyString ? 0.0 : NaN; // hex number ? if (*c == '0' && (*(c+1) == 'x' || *(c+1) == 'X')) { const char* firstDigitPosition = c + 2; c++; d = 0.0; while (*(++c)) { if (*c >= '0' && *c <= '9') d = d * 16.0 + *c - '0'; else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f')) d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0; else break; } if (d >= mantissaOverflowLowerBound) d = parseIntOverflow(firstDigitPosition, c - firstDigitPosition, 16); } else { // regular number ? char *end; d = kjs_strtod(c, &end); if ((d != 0.0 || end != c) && d != Inf && d != -Inf) { c = end; } else { double sign = 1.0; if (*c == '+') c++; else if (*c == '-') { sign = -1.0; c++; } // We used strtod() to do the conversion. However, strtod() handles // infinite values slightly differently than JavaScript in that it // converts the string "inf" with any capitalization to infinity, // whereas the ECMA spec requires that it be converted to NaN. if (strncmp(c, "Infinity", 8) == 0) { d = sign * Inf; c += 8; } else if ((d == Inf || d == -Inf) && *c != 'I' && *c != 'i') c = end; else return NaN; } } // allow trailing white space while (isspace(*c)) c++; // don't allow anything after - unless tolerant=true if (!tolerateTrailingJunk && *c != '\0') d = NaN; return d; } double UString::toDouble(bool tolerateTrailingJunk) const { return toDouble(tolerateTrailingJunk, true); } double UString::toDouble() const { return toDouble(false, true); } uint32_t UString::toUInt32(bool *ok) const { double d = toDouble(); bool b = true; if (d != static_cast(d)) { b = false; d = 0; } if (ok) *ok = b; return static_cast(d); } uint32_t UString::toUInt32(bool *ok, bool tolerateEmptyString) const { double d = toDouble(false, tolerateEmptyString); bool b = true; if (d != static_cast(d)) { b = false; d = 0; } if (ok) *ok = b; return static_cast(d); } uint32_t UString::toStrictUInt32(bool *ok) const { if (ok) *ok = false; // Empty string is not OK. int len = m_rep->len; if (len == 0) return 0; const UChar *p = m_rep->data(); unsigned short c = p->unicode(); // If the first digit is 0, only 0 itself is OK. if (c == '0') { if (len == 1 && ok) *ok = true; return 0; } // Convert to UInt32, checking for overflow. uint32_t i = 0; while (1) { // Process character, turning it into a digit. if (c < '0' || c > '9') return 0; const unsigned d = c - '0'; // Multiply by 10, checking for overflow out of 32 bits. if (i > 0xFFFFFFFFU / 10) return 0; i *= 10; // Add in the digit, checking for overflow out of 32 bits. const unsigned max = 0xFFFFFFFFU - d; if (i > max) return 0; i += d; // Handle end of string. if (--len == 0) { if (ok) *ok = true; return i; } // Get next character. c = (++p)->unicode(); } } int UString::find(const UString &f, int pos) const { int sz = size(); int fsz = f.size(); if (sz < fsz) return -1; if (pos < 0) pos = 0; if (fsz == 0) return pos; const UChar *end = data() + sz - fsz; int fsizeminusone = (fsz - 1) * sizeof(UChar); const UChar *fdata = f.data(); unsigned short fchar = fdata->uc; ++fdata; for (const UChar *c = data() + pos; c <= end; c++) if (c->uc == fchar && !memcmp(c + 1, fdata, fsizeminusone)) return static_cast(c - data()); return -1; } int UString::find(UChar ch, int pos) const { if (pos < 0) pos = 0; const UChar *end = data() + size(); for (const UChar *c = data() + pos; c < end; c++) if (*c == ch) return static_cast(c - data()); return -1; } int UString::rfind(const UString &f, int pos) const { int sz = size(); int fsz = f.size(); if (sz < fsz) return -1; if (pos < 0) pos = 0; if (pos > sz - fsz) pos = sz - fsz; if (fsz == 0) return pos; int fsizeminusone = (fsz - 1) * sizeof(UChar); const UChar *fdata = f.data(); for (const UChar *c = data() + pos; c >= data(); c--) { if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone)) return static_cast(c - data()); } return -1; } int UString::rfind(UChar ch, int pos) const { if (isEmpty()) return -1; if (pos + 1 >= size()) pos = size() - 1; for (const UChar *c = data() + pos; c >= data(); c--) { if (*c == ch) return static_cast(c-data()); } return -1; } UString UString::substr(int pos, int len) const { int s = size(); if (pos < 0) pos = 0; else if (pos >= s) pos = s; if (len < 0) len = s; if (pos + len >= s) len = s - pos; if (pos == 0 && len == s) return *this; return UString(Rep::create(m_rep, pos, len)); } bool operator==(const UString& s1, const UString& s2) { if (s1.m_rep->len != s2.m_rep->len) return false; return (memcmp(s1.m_rep->data(), s2.m_rep->data(), s1.m_rep->len * sizeof(UChar)) == 0); } bool operator==(const UString& s1, const char *s2) { if (s2 == 0) { return s1.isEmpty(); } const UChar *u = s1.data(); const UChar *uend = u + s1.size(); while (u != uend && *s2) { if (u->uc != (unsigned char)*s2) return false; s2++; u++; } return u == uend && *s2 == 0; } bool operator<(const UString& s1, const UString& s2) { const int l1 = s1.size(); const int l2 = s2.size(); const int lmin = l1 < l2 ? l1 : l2; const UChar *c1 = s1.data(); const UChar *c2 = s2.data(); int l = 0; while (l < lmin && *c1 == *c2) { c1++; c2++; l++; } if (l < lmin) return (c1->uc < c2->uc); return (l1 < l2); } int compare(const UString& s1, const UString& s2) { const int l1 = s1.size(); const int l2 = s2.size(); const int lmin = l1 < l2 ? l1 : l2; const UChar *c1 = s1.data(); const UChar *c2 = s2.data(); int l = 0; while (l < lmin && *c1 == *c2) { c1++; c2++; l++; } if (l < lmin) return (c1->uc > c2->uc) ? 1 : -1; if (l1 == l2) return 0; return (l1 > l2) ? 1 : -1; } inline int inlineUTF8SequenceLengthNonASCII(char b0) { if ((b0 & 0xC0) != 0xC0) return 0; if ((b0 & 0xE0) == 0xC0) return 2; if ((b0 & 0xF0) == 0xE0) return 3; if ((b0 & 0xF8) == 0xF0) return 4; return 0; } int UTF8SequenceLengthNonASCII(char b0) { return inlineUTF8SequenceLengthNonASCII(b0); } inline int inlineUTF8SequenceLength(char b0) { return (b0 & 0x80) == 0 ? 1 : UTF8SequenceLengthNonASCII(b0); } // Given a first byte, gives the length of the UTF-8 sequence it begins. // Returns 0 for bytes that are not legal starts of UTF-8 sequences. // Only allows sequences of up to 4 bytes, since that works for all Unicode characters (U-00000000 to U-0010FFFF). int UTF8SequenceLength(char b0) { return (b0 & 0x80) == 0 ? 1 : inlineUTF8SequenceLengthNonASCII(b0); } // Takes a null-terminated C-style string with a UTF-8 sequence in it and converts it to a character. // Only allows Unicode characters (U-00000000 to U-0010FFFF). // Returns -1 if the sequence is not valid (including presence of extra bytes). int decodeUTF8Sequence(const char *sequence) { // Handle 0-byte sequences (never valid). const unsigned char b0 = sequence[0]; const int length = inlineUTF8SequenceLength(b0); if (length == 0) return -1; // Handle 1-byte sequences (plain ASCII). const unsigned char b1 = sequence[1]; if (length == 1) { if (b1) return -1; return b0; } // Handle 2-byte sequences. if ((b1 & 0xC0) != 0x80) return -1; const unsigned char b2 = sequence[2]; if (length == 2) { if (b2) return -1; const int c = ((b0 & 0x1F) << 6) | (b1 & 0x3F); if (c < 0x80) return -1; return c; } // Handle 3-byte sequences. if ((b2 & 0xC0) != 0x80) return -1; const unsigned char b3 = sequence[3]; if (length == 3) { if (b3) return -1; const int c = ((b0 & 0xF) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F); if (c < 0x800) return -1; // UTF-16 surrogates should never appear in UTF-8 data. if (c >= 0xD800 && c <= 0xDFFF) return -1; // Backwards BOM and U+FFFF should never appear in UTF-8 data. if (c == 0xFFFE || c == 0xFFFF) return -1; return c; } // Handle 4-byte sequences. if ((b3 & 0xC0) != 0x80) return -1; const unsigned char b4 = sequence[4]; if (length == 4) { if (b4) return -1; const int c = ((b0 & 0x7) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F); if (c < 0x10000 || c > 0x10FFFF) return -1; return c; } return -1; } CString UString::UTF8String() const { // Allocate a buffer big enough to hold all the characters. const int length = size(); Vector buffer(length * 3); // Convert to runs of 8-bit characters. char *p = buffer.begin(); const UChar *d = data(); for (int i = 0; i != length; ++i) { unsigned short c = d[i].unicode(); if (c < 0x80) { *p++ = (char)c; } else if (c < 0x800) { *p++ = (char)((c >> 6) | 0xC0); // C0 is the 2-byte flag for UTF-8 *p++ = (char)((c | 0x80) & 0xBF); // next 6 bits, with high bit set } else if (c >= 0xD800 && c <= 0xDBFF && i < length && d[i+1].uc >= 0xDC00 && d[i+1].uc <= 0xDFFF) { unsigned sc = 0x10000 + (((c & 0x3FF) << 10) | (d[i+1].uc & 0x3FF)); *p++ = (char)((sc >> 18) | 0xF0); // F0 is the 4-byte flag for UTF-8 *p++ = (char)(((sc >> 12) | 0x80) & 0xBF); // next 6 bits, with high bit set *p++ = (char)(((sc >> 6) | 0x80) & 0xBF); // next 6 bits, with high bit set *p++ = (char)((sc | 0x80) & 0xBF); // next 6 bits, with high bit set ++i; } else { *p++ = (char)((c >> 12) | 0xE0); // E0 is the 3-byte flag for UTF-8 *p++ = (char)(((c >> 6) | 0x80) & 0xBF); // next 6 bits, with high bit set *p++ = (char)((c | 0x80) & 0xBF); // next 6 bits, with high bit set } } // Return the result as a C string. CString result(buffer, p - buffer); return result; } } // namespace KJS