/* * sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs * from the 15-puzzle in that you toroidally rotate a row or column * at a time. */ #include #include #include #include #include #include #include "puzzles.h" #define PREFERRED_TILE_SIZE 48 #define TILE_SIZE (ds->tilesize) #define BORDER TILE_SIZE #define HIGHLIGHT_WIDTH (TILE_SIZE / 20) #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 ) #define ANIM_TIME 0.13F #define FLASH_FRAME 0.13F #define X(state, i) ( (i) % (state)->w ) #define Y(state, i) ( (i) / (state)->w ) #define C(state, x, y) ( (y) * (state)->w + (x) ) enum { COL_BACKGROUND, COL_TEXT, COL_HIGHLIGHT, COL_LOWLIGHT, NCOLOURS }; struct game_params { int w, h; int movetarget; }; struct game_state { int w, h, n; int *tiles; int completed; int used_solve; /* used to suppress completion flash */ int movecount, movetarget; int last_movement_sense; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 4; ret->movetarget = 0; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int w, h; char buf[80]; switch (i) { case 0: w = 3, h = 3; break; case 1: w = 4, h = 3; break; case 2: w = 4, h = 4; break; case 3: w = 5, h = 4; break; case 4: w = 5, h = 5; break; default: return FALSE; } sprintf(buf, "%dx%d", w, h); *name = dupstr(buf); *params = ret = snew(game_params); ret->w = w; ret->h = h; ret->movetarget = 0; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); ret->movetarget = 0; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'm') { string++; ret->movetarget = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } } static char *encode_params(game_params *params, int full) { char data[256]; sprintf(data, "%dx%d", params->w, params->h); /* Shuffle limit is part of the limited parameters, because we have to * supply the target move count. */ if (params->movetarget) sprintf(data + strlen(data), "m%d", params->movetarget); return dupstr(data); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(4, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Number of shuffling moves"; ret[2].type = C_STRING; sprintf(buf, "%d", params->movetarget); ret[2].sval = dupstr(buf); ret[2].ival = 0; ret[3].name = NULL; ret[3].type = C_END; ret[3].sval = NULL; ret[3].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); ret->movetarget = atoi(cfg[2].sval); return ret; } static char *validate_params(game_params *params, int full) { if (params->w < 2 || params->h < 2) return "Width and height must both be at least two"; return NULL; } static int perm_parity(int *perm, int n) { int i, j, ret; ret = 0; for (i = 0; i < n-1; i++) for (j = i+1; j < n; j++) if (perm[i] > perm[j]) ret = !ret; return ret; } static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { int stop, n, i, x; int x1, x2, p1, p2; int *tiles, *used; char *ret; int retlen; n = params->w * params->h; tiles = snewn(n, int); if (params->movetarget) { int prevoffset = -1; int max = (params->w > params->h ? params->w : params->h); int *prevmoves = snewn(max, int); /* * Shuffle the old-fashioned way, by making a series of * single moves on the grid. */ for (i = 0; i < n; i++) tiles[i] = i; for (i = 0; i < params->movetarget; i++) { int start, offset, len, direction, index; int j, tmp; /* * Choose a move to make. We can choose from any row * or any column. */ while (1) { j = random_upto(rs, params->w + params->h); if (j < params->w) { /* Column. */ index = j; start = j; offset = params->w; len = params->h; } else { /* Row. */ index = j - params->w; start = index * params->w; offset = 1; len = params->w; } direction = -1 + 2 * random_upto(rs, 2); /* * To at least _try_ to avoid boring cases, check * that this move doesn't directly undo a previous * one, or repeat it so many times as to turn it * into fewer moves in the opposite direction. (For * example, in a row of length 4, we're allowed to * move it the same way twice, but not three * times.) * * We track this for each individual row/column, * and clear all the counters as soon as a * perpendicular move is made. This isn't perfect * (it _can't_ guaranteeably be perfect - there * will always come a move count beyond which a * shorter solution will be possible than the one * which constructed the position) but it should * sort out all the obvious cases. */ if (offset == prevoffset) { tmp = prevmoves[index] + direction; if (abs(2*tmp) > len || abs(tmp) < abs(prevmoves[index])) continue; } /* If we didn't `continue', we've found an OK move to make. */ if (offset != prevoffset) { int i; for (i = 0; i < max; i++) prevmoves[i] = 0; prevoffset = offset; } prevmoves[index] += direction; break; } /* * Make the move. */ if (direction < 0) { start += (len-1) * offset; offset = -offset; } tmp = tiles[start]; for (j = 0; j+1 < len; j++) tiles[start + j*offset] = tiles[start + (j+1)*offset]; tiles[start + (len-1) * offset] = tmp; } sfree(prevmoves); } else { used = snewn(n, int); for (i = 0; i < n; i++) { tiles[i] = -1; used[i] = FALSE; } /* * If both dimensions are odd, there is a parity * constraint. */ if (params->w & params->h & 1) stop = 2; else stop = 0; /* * Place everything except (possibly) the last two tiles. */ for (x = 0, i = n; i > stop; i--) { int k = i > 1 ? random_upto(rs, i) : 0; int j; for (j = 0; j < n; j++) if (!used[j] && (k-- == 0)) break; assert(j < n && !used[j]); used[j] = TRUE; while (tiles[x] >= 0) x++; assert(x < n); tiles[x] = j; } if (stop) { /* * Find the last two locations, and the last two * pieces. */ while (tiles[x] >= 0) x++; assert(x < n); x1 = x; x++; while (tiles[x] >= 0) x++; assert(x < n); x2 = x; for (i = 0; i < n; i++) if (!used[i]) break; p1 = i; for (i = p1+1; i < n; i++) if (!used[i]) break; p2 = i; /* * Try the last two tiles one way round. If that fails, * swap them. */ tiles[x1] = p1; tiles[x2] = p2; if (perm_parity(tiles, n) != 0) { tiles[x1] = p2; tiles[x2] = p1; assert(perm_parity(tiles, n) == 0); } } sfree(used); } /* * Now construct the game description, by describing the tile * array as a simple sequence of comma-separated integers. */ ret = NULL; retlen = 0; for (i = 0; i < n; i++) { char buf[80]; int k; k = sprintf(buf, "%d,", tiles[i]+1); ret = sresize(ret, retlen + k + 1, char); strcpy(ret + retlen, buf); retlen += k; } ret[retlen-1] = '\0'; /* delete last comma */ sfree(tiles); return ret; } static char *validate_desc(game_params *params, char *desc) { char *p, *err; int i, area; int *used; area = params->w * params->h; p = desc; err = NULL; used = snewn(area, int); for (i = 0; i < area; i++) used[i] = FALSE; for (i = 0; i < area; i++) { char *q = p; int n; if (*p < '0' || *p > '9') { err = "Not enough numbers in string"; goto leave; } while (*p >= '0' && *p <= '9') p++; if (i < area-1 && *p != ',') { err = "Expected comma after number"; goto leave; } else if (i == area-1 && *p) { err = "Excess junk at end of string"; goto leave; } n = atoi(q); if (n < 1 || n > area) { err = "Number out of range"; goto leave; } if (used[n-1]) { err = "Number used twice"; goto leave; } used[n-1] = TRUE; if (*p) p++; /* eat comma */ } leave: sfree(used); return err; } static game_state *new_game(midend *me, game_params *params, char *desc) { game_state *state = snew(game_state); int i; char *p; state->w = params->w; state->h = params->h; state->n = params->w * params->h; state->tiles = snewn(state->n, int); p = desc; i = 0; for (i = 0; i < state->n; i++) { assert(*p); state->tiles[i] = atoi(p); while (*p && *p != ',') p++; if (*p) p++; /* eat comma */ } assert(!*p); state->completed = state->movecount = 0; state->movetarget = params->movetarget; state->used_solve = FALSE; state->last_movement_sense = 0; return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->n = state->n; ret->tiles = snewn(state->w * state->h, int); memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int)); ret->completed = state->completed; ret->movecount = state->movecount; ret->movetarget = state->movetarget; ret->used_solve = state->used_solve; ret->last_movement_sense = state->last_movement_sense; return ret; } static void free_game(game_state *state) { sfree(state->tiles); sfree(state); } static char *solve_game(game_state *state, game_state *currstate, char *aux, char **error) { return dupstr("S"); } static char *game_text_format(game_state *state) { char *ret, *p, buf[80]; int x, y, col, maxlen; /* * First work out how many characters we need to display each * number. */ col = sprintf(buf, "%d", state->n); /* * Now we know the exact total size of the grid we're going to * produce: it's got h rows, each containing w lots of col, w-1 * spaces and a trailing newline. */ maxlen = state->h * state->w * (col+1); ret = snewn(maxlen+1, char); p = ret; for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { int v = state->tiles[state->w*y+x]; sprintf(buf, "%*d", col, v); memcpy(p, buf, col); p += col; if (x+1 == state->w) *p++ = '\n'; else *p++ = ' '; } } assert(p - ret == maxlen); *p = '\0'; return ret; } static game_ui *new_ui(game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static char *encode_ui(game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, char *encoding) { } static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { } struct game_drawstate { int started; int w, h, bgcolour; int *tiles; int tilesize; }; static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { int cx, cy, dx, dy; char buf[80]; button &= ~MOD_MASK; if (button != LEFT_BUTTON && button != RIGHT_BUTTON) return NULL; cx = FROMCOORD(x); cy = FROMCOORD(y); if (cx == -1 && cy >= 0 && cy < state->h) dx = -1, dy = 0; else if (cx == state->w && cy >= 0 && cy < state->h) dx = +1, dy = 0; else if (cy == -1 && cx >= 0 && cx < state->w) dy = -1, dx = 0; else if (cy == state->h && cx >= 0 && cx < state->w) dy = +1, dx = 0; else return NULL; /* invalid click location */ /* reverse direction if right hand button is pressed */ if (button == RIGHT_BUTTON) { dx = -dx; dy = -dy; } if (dx) sprintf(buf, "R%d,%d", cy, dx); else sprintf(buf, "C%d,%d", cx, dy); return dupstr(buf); } static game_state *execute_move(game_state *from, char *move) { int cx, cy, dx, dy; int tx, ty, n; game_state *ret; if (!strcmp(move, "S")) { int i; ret = dup_game(from); /* * Simply replace the grid with a solved one. For this game, * this isn't a useful operation for actually telling the user * what they should have done, but it is useful for * conveniently being able to get hold of a clean state from * which to practise manoeuvres. */ for (i = 0; i < ret->n; i++) ret->tiles[i] = i+1; ret->used_solve = TRUE; ret->completed = ret->movecount = 1; return ret; } if (move[0] == 'R' && sscanf(move+1, "%d,%d", &cy, &dx) == 2 && cy >= 0 && cy < from->h) { cx = dy = 0; n = from->w; } else if (move[0] == 'C' && sscanf(move+1, "%d,%d", &cx, &dy) == 2 && cx >= 0 && cx < from->w) { cy = dx = 0; n = from->h; } else return NULL; ret = dup_game(from); do { tx = (cx - dx + from->w) % from->w; ty = (cy - dy + from->h) % from->h; ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)]; cx = tx; cy = ty; } while (--n > 0); ret->movecount++; ret->last_movement_sense = dx+dy; /* * See if the game has been completed. */ if (!ret->completed) { ret->completed = ret->movecount; for (n = 0; n < ret->n; n++) if (ret->tiles[n] != n+1) ret->completed = FALSE; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); for (i = 0; i < 3; i++) ret[COL_TEXT * 3 + i] = 0.0; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->bgcolour = COL_BACKGROUND; ds->tiles = snewn(ds->w*ds->h, int); ds->tilesize = 0; /* haven't decided yet */ for (i = 0; i < ds->w*ds->h; i++) ds->tiles[i] = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->tiles); sfree(ds); } static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state, int x, int y, int tile, int flash_colour) { if (tile == 0) { draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE, flash_colour); } else { int coords[6]; char str[40]; coords[0] = x + TILE_SIZE - 1; coords[1] = y + TILE_SIZE - 1; coords[2] = x + TILE_SIZE - 1; coords[3] = y; coords[4] = x; coords[5] = y + TILE_SIZE - 1; draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT); coords[0] = x; coords[1] = y; draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT); draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, flash_colour); sprintf(str, "%d", tile); draw_text(dr, x + TILE_SIZE/2, y + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_TEXT, str); } draw_update(dr, x, y, TILE_SIZE, TILE_SIZE); } static void draw_arrow(drawing *dr, game_drawstate *ds, int x, int y, int xdx, int xdy) { int coords[14]; int ydy = -xdx, ydx = xdy; #define POINT(n, xx, yy) ( \ coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \ coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy) POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */ POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */ POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */ POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */ POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */ POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */ POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */ draw_polygon(dr, coords, 7, COL_LOWLIGHT, COL_TEXT); } static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int i, bgcolour; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_FRAME); bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); } else bgcolour = COL_BACKGROUND; if (!ds->started) { int coords[10]; draw_rect(dr, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND); draw_update(dr, 0, 0, TILE_SIZE * state->w + 2 * BORDER, TILE_SIZE * state->h + 2 * BORDER); /* * Recessed area containing the whole puzzle. */ coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[3] = COORD(0) - HIGHLIGHT_WIDTH; coords[4] = coords[2] - TILE_SIZE; coords[5] = coords[3] + TILE_SIZE; coords[8] = COORD(0) - HIGHLIGHT_WIDTH; coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[6] = coords[8] + TILE_SIZE; coords[7] = coords[9] - TILE_SIZE; draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT); coords[1] = COORD(0) - HIGHLIGHT_WIDTH; coords[0] = COORD(0) - HIGHLIGHT_WIDTH; draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT); /* * Arrows for making moves. */ for (i = 0; i < state->w; i++) { draw_arrow(dr, ds, COORD(i), COORD(0), +1, 0); draw_arrow(dr, ds, COORD(i+1), COORD(state->h), -1, 0); } for (i = 0; i < state->h; i++) { draw_arrow(dr, ds, COORD(state->w), COORD(i), 0, +1); draw_arrow(dr, ds, COORD(0), COORD(i+1), 0, -1); } ds->started = TRUE; } /* * Now draw each tile. */ clip(dr, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h); for (i = 0; i < state->n; i++) { int t, t0; /* * Figure out what should be displayed at this * location. It's either a simple tile, or it's a * transition between two tiles (in which case we say * -1 because it must always be drawn). */ if (oldstate && oldstate->tiles[i] != state->tiles[i]) t = -1; else t = state->tiles[i]; t0 = t; if (ds->bgcolour != bgcolour || /* always redraw when flashing */ ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1) { int x, y, x2, y2; /* * Figure out what to _actually_ draw, and where to * draw it. */ if (t == -1) { int x0, y0, x1, y1, dx, dy; int j; float c; int sense; if (dir < 0) { assert(oldstate); sense = -oldstate->last_movement_sense; } else { sense = state->last_movement_sense; } t = state->tiles[i]; /* * FIXME: must be prepared to draw a double * tile in some situations. */ /* * Find the coordinates of this tile in the old and * new states. */ x1 = COORD(X(state, i)); y1 = COORD(Y(state, i)); for (j = 0; j < oldstate->n; j++) if (oldstate->tiles[j] == state->tiles[i]) break; assert(j < oldstate->n); x0 = COORD(X(state, j)); y0 = COORD(Y(state, j)); dx = (x1 - x0); if (dx != 0 && dx != TILE_SIZE * sense) { dx = (dx < 0 ? dx + TILE_SIZE * state->w : dx - TILE_SIZE * state->w); assert(abs(dx) == TILE_SIZE); } dy = (y1 - y0); if (dy != 0 && dy != TILE_SIZE * sense) { dy = (dy < 0 ? dy + TILE_SIZE * state->h : dy - TILE_SIZE * state->h); assert(abs(dy) == TILE_SIZE); } c = (animtime / ANIM_TIME); if (c < 0.0F) c = 0.0F; if (c > 1.0F) c = 1.0F; x = x0 + (int)(c * dx); y = y0 + (int)(c * dy); x2 = x1 - dx + (int)(c * dx); y2 = y1 - dy + (int)(c * dy); } else { x = COORD(X(state, i)); y = COORD(Y(state, i)); x2 = y2 = -1; } draw_tile(dr, ds, state, x, y, t, bgcolour); if (x2 != -1 || y2 != -1) draw_tile(dr, ds, state, x2, y2, t, bgcolour); } ds->tiles[i] = t0; } unclip(dr); ds->bgcolour = bgcolour; /* * Update the status bar. */ { char statusbuf[256]; /* * Don't show the new status until we're also showing the * new _state_ - after the game animation is complete. */ if (oldstate) state = oldstate; if (state->used_solve) sprintf(statusbuf, "Moves since auto-solve: %d", state->movecount - state->completed); else { sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->movecount)); if (state->movetarget) sprintf(statusbuf+strlen(statusbuf), " (target %d)", state->movetarget); } status_bar(dr, statusbuf); } } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { return ANIM_TIME; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) return 2 * FLASH_FRAME; else return 0.0F; } static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; } static void game_print_size(game_params *params, float *x, float *y) { } static void game_print(drawing *dr, game_state *state, int tilesize) { } #ifdef COMBINED #define thegame sixteen #endif const struct game thegame = { "Sixteen", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, TRUE, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, FALSE, FALSE, game_print_size, game_print, TRUE, /* wants_statusbar */ FALSE, game_timing_state, 0, /* flags */ };