/* $XFree86$ */ /* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. */ /* * patch.c++ * * $Date$ $Revision$ * $Header$ */ #include #include "glimports.h" #include "mystdio.h" #include "myassert.h" #include "mymath.h" #include "mystring.h" #include "patch.h" #include "mapdesc.h" #include "quilt.h" #include "nurbsconsts.h" #include "simplemath.h" //for abs function in ::singleStep(); #include "gluint.h" /*-------------------------------------------------------------------------- * Patch - copy patch from quilt and transform control points *-------------------------------------------------------------------------- */ Patch::Patch( Quilt_ptr geo, REAL *pta, REAL *ptb, Patch *n ) { /* pspec[i].range is uninit here */ mapdesc = geo->mapdesc; cullval = mapdesc->isCulling() ? CULL_ACCEPT : CULL_TRIVIAL_ACCEPT; notInBbox = mapdesc->isBboxSubdividing() ? 1 : 0; needsSampling = mapdesc->isRangeSampling() ? 1 : 0; pspec[0].order = geo->qspec[0].order; pspec[1].order = geo->qspec[1].order; pspec[0].stride = pspec[1].order * MAXCOORDS; pspec[1].stride = MAXCOORDS; /* transform control points to sampling and culling spaces */ REAL *ps = geo->cpts; geo->select( pta, ptb ); ps += geo->qspec[0].offset; ps += geo->qspec[1].offset; ps += geo->qspec[0].index * geo->qspec[0].order * geo->qspec[0].stride; ps += geo->qspec[1].index * geo->qspec[1].order * geo->qspec[1].stride; if( needsSampling ) { mapdesc->xformSampling( ps, geo->qspec[0].order, geo->qspec[0].stride, geo->qspec[1].order, geo->qspec[1].stride, spts, pspec[0].stride, pspec[1].stride ); } if( cullval == CULL_ACCEPT ) { mapdesc->xformCulling( ps, geo->qspec[0].order, geo->qspec[0].stride, geo->qspec[1].order, geo->qspec[1].stride, cpts, pspec[0].stride, pspec[1].stride ); } if( notInBbox ) { mapdesc->xformBounding( ps, geo->qspec[0].order, geo->qspec[0].stride, geo->qspec[1].order, geo->qspec[1].stride, bpts, pspec[0].stride, pspec[1].stride ); } /* set scale range */ pspec[0].range[0] = geo->qspec[0].breakpoints[geo->qspec[0].index]; pspec[0].range[1] = geo->qspec[0].breakpoints[geo->qspec[0].index+1]; pspec[0].range[2] = pspec[0].range[1] - pspec[0].range[0]; pspec[1].range[0] = geo->qspec[1].breakpoints[geo->qspec[1].index]; pspec[1].range[1] = geo->qspec[1].breakpoints[geo->qspec[1].index+1]; pspec[1].range[2] = pspec[1].range[1] - pspec[1].range[0]; // may need to subdivide to match range of sub-patch if( pspec[0].range[0] != pta[0] ) { assert( pspec[0].range[0] < pta[0] ); Patch lower( *this, 0, pta[0], 0 ); *this = lower; } if( pspec[0].range[1] != ptb[0] ) { assert( pspec[0].range[1] > ptb[0] ); Patch upper( *this, 0, ptb[0], 0 ); } if( pspec[1].range[0] != pta[1] ) { assert( pspec[1].range[0] < pta[1] ); Patch lower( *this, 1, pta[1], 0 ); *this = lower; } if( pspec[1].range[1] != ptb[1] ) { assert( pspec[1].range[1] > ptb[1] ); Patch upper( *this, 1, ptb[1], 0 ); } checkBboxConstraint(); next = n; } /*-------------------------------------------------------------------------- * Patch - subdivide a patch along an isoparametric line *-------------------------------------------------------------------------- */ Patch::Patch( Patch& upper, int param, REAL value, Patch *n ) { Patch& lower = *this; lower.cullval = upper.cullval; lower.mapdesc = upper.mapdesc; lower.notInBbox = upper.notInBbox; lower.needsSampling = upper.needsSampling; lower.pspec[0].order = upper.pspec[0].order; lower.pspec[1].order = upper.pspec[1].order; lower.pspec[0].stride = upper.pspec[0].stride; lower.pspec[1].stride = upper.pspec[1].stride; lower.next = n; /* reset scale range */ switch( param ) { case 0: { REAL d = (value-upper.pspec[0].range[0]) / upper.pspec[0].range[2]; if( needsSampling ) mapdesc->subdivide( upper.spts, lower.spts, d, pspec[1].order, pspec[1].stride, pspec[0].order, pspec[0].stride ); if( cullval == CULL_ACCEPT ) mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[1].order, pspec[1].stride, pspec[0].order, pspec[0].stride ); if( notInBbox ) mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[1].order, pspec[1].stride, pspec[0].order, pspec[0].stride ); lower.pspec[0].range[0] = upper.pspec[0].range[0]; lower.pspec[0].range[1] = value; lower.pspec[0].range[2] = value - upper.pspec[0].range[0]; upper.pspec[0].range[0] = value; upper.pspec[0].range[2] = upper.pspec[0].range[1] - value; lower.pspec[1].range[0] = upper.pspec[1].range[0]; lower.pspec[1].range[1] = upper.pspec[1].range[1]; lower.pspec[1].range[2] = upper.pspec[1].range[2]; break; } case 1: { REAL d = (value-upper.pspec[1].range[0]) / upper.pspec[1].range[2]; if( needsSampling ) mapdesc->subdivide( upper.spts, lower.spts, d, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); if( cullval == CULL_ACCEPT ) mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); if( notInBbox ) mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); lower.pspec[0].range[0] = upper.pspec[0].range[0]; lower.pspec[0].range[1] = upper.pspec[0].range[1]; lower.pspec[0].range[2] = upper.pspec[0].range[2]; lower.pspec[1].range[0] = upper.pspec[1].range[0]; lower.pspec[1].range[1] = value; lower.pspec[1].range[2] = value - upper.pspec[1].range[0]; upper.pspec[1].range[0] = value; upper.pspec[1].range[2] = upper.pspec[1].range[1] - value; break; } } // inherit bounding box if( mapdesc->isBboxSubdividing() && ! notInBbox ) memcpy( lower.bb, upper.bb, sizeof( bb ) ); lower.checkBboxConstraint(); upper.checkBboxConstraint(); } /*-------------------------------------------------------------------------- * clamp - clamp the sampling rate to a given maximum *-------------------------------------------------------------------------- */ void Patch::clamp( void ) { if( mapdesc->clampfactor != N_NOCLAMPING ) { pspec[0].clamp( mapdesc->clampfactor ); pspec[1].clamp( mapdesc->clampfactor ); } } void Patchspec::clamp( REAL clampfactor ) { if( sidestep[0] < minstepsize ) sidestep[0] = clampfactor * minstepsize; if( sidestep[1] < minstepsize ) sidestep[1] = clampfactor * minstepsize; if( stepsize < minstepsize ) stepsize = clampfactor * minstepsize; } void Patch::checkBboxConstraint( void ) { if( notInBbox && mapdesc->bboxTooBig( bpts, pspec[0].stride, pspec[1].stride, pspec[0].order, pspec[1].order, bb ) != 1 ) { notInBbox = 0; } } void Patch::bbox( void ) { if( mapdesc->isBboxSubdividing() ) mapdesc->surfbbox( bb ); } /*-------------------------------------------------------------------------- * getstepsize - compute the sampling density across the patch * and determine if patch needs to be subdivided *-------------------------------------------------------------------------- */ void Patch::getstepsize( void ) { pspec[0].minstepsize = pspec[1].minstepsize = 0; pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0; if( mapdesc->isConstantSampling() ) { // fixed number of samples per patch in each direction // maxsrate is number of s samples per patch // maxtrate is number of t samples per patch pspec[0].getstepsize( mapdesc->maxsrate ); pspec[1].getstepsize( mapdesc->maxtrate ); } else if( mapdesc->isDomainSampling() ) { // maxsrate is number of s samples per unit s length of domain // maxtrate is number of t samples per unit t length of domain pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] ); pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] ); } else if( ! needsSampling ) { pspec[0].singleStep(); pspec[1].singleStep(); } else { // upper bound on path length between sample points REAL tmp[MAXORDER][MAXORDER][MAXCOORDS]; const int trstride = sizeof(tmp[0]) / sizeof(REAL); const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL); assert( pspec[0].order <= MAXORDER ); /* points have been transformed, therefore they are homogeneous */ int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order ); if( val == 0 ) { // control points cross infinity, therefore partials are undefined pspec[0].getstepsize( mapdesc->maxsrate ); pspec[1].getstepsize( mapdesc->maxtrate ); } else { REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE ); // REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE ); pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ? (pspec[0].range[2] / mapdesc->maxsrate) : 0.0; pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ? (pspec[1].range[2] / mapdesc->maxtrate) : 0.0; if( mapdesc->isParametricDistanceSampling() || mapdesc->isObjectSpaceParaSampling() ) { REAL t2; t2 = mapdesc->getProperty( N_ERROR_TOLERANCE ); // t2 is upper bound on the distance between surface and tessellant REAL ssv[2], ttv[2]; REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL st = mapdesc->calcPartialVelocity( 0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 ); REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 ); //make sure that ss st and tt are nonnegative: if(ss <0) ss = -ss; if(st <0) st = -st; if(tt <0) tt = -tt; if( ss != 0.0 && tt != 0.0 ) { /* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n", ssv[0], ssv[1], ttv[0], ttv[1] ); */ REAL ttq = ::SQRT( (float) ss ); REAL ssq = ::SQRT( (float) tt ); REAL ds = ::SQRT( 4 * t2 * ttq / ( ss * ttq + st * ssq ) ); REAL dt = ::SQRT( 4 * t2 * ssq / ( tt * ssq + st * ttq ) ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]); pspec[0].sidestep[0] = (ssv[0] > scutoff) ? ::SQRT( 2.0 * t2 / ssv[0] ) : pspec[0].range[2]; pspec[0].sidestep[1] = (ssv[1] > scutoff) ? ::SQRT( 2.0 * t2 / ssv[1] ) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]); pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? ::SQRT( 2.0 * t2 / ttv[0] ) : pspec[1].range[2]; pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? ::SQRT( 2.0 * t2 / ttv[1] ) : pspec[1].range[2]; } else if( ss != 0.0 ) { REAL x = pspec[1].range[2] * st; REAL ds = ( ::SQRT( x * x + 8.0 * t2 * ss ) - x ) / ss; pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]); pspec[0].sidestep[0] = (ssv[0] > scutoff) ? ::SQRT( 2.0 * t2 / ssv[0] ) : pspec[0].range[2]; pspec[0].sidestep[1] = (ssv[1] > scutoff) ? ::SQRT( 2.0 * t2 / ssv[1] ) : pspec[0].range[2]; pspec[1].singleStep(); } else if( tt != 0.0 ) { REAL x = pspec[0].range[2] * st; REAL dt = ( ::SQRT( x * x + 8.0 * t2 * tt ) - x ) / tt; pspec[0].singleStep(); REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]); pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? ::SQRT( 2.0 * t2 / ttv[0] ) : pspec[1].range[2]; pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? ::SQRT( 2.0 * t2 / ttv[1] ) : pspec[1].range[2]; } else { if( 4.0 * t2 > st * pspec[0].range[2] * pspec[1].range[2] ) { pspec[0].singleStep(); pspec[1].singleStep(); } else { REAL area = 4.0 * t2 / st; REAL ds = ::SQRT( area * pspec[0].range[2] / pspec[1].range[2] ); REAL dt = ::SQRT( area * pspec[1].range[2] / pspec[0].range[2] ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = pspec[0].range[2]; pspec[0].sidestep[1] = pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = pspec[1].range[2]; pspec[1].sidestep[1] = pspec[1].range[2]; } } } else if( mapdesc->isPathLengthSampling() || mapdesc->isObjectSpacePathSampling()) { // t1 is upper bound on path length REAL msv[2], mtv[2]; REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 ); REAL side_scale = 1.0; if( ms != 0.0 ) { if( mt != 0.0 ) { /* REAL d = t1 / ( ms * ms + mt * mt );*/ /* REAL ds = mt * d;*/ REAL ds = t1 / (2.0*ms); /* REAL dt = ms * d;*/ REAL dt = t1 / (2.0*mt); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[1]) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[1]) : pspec[1].range[2]; } else { pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2]; pspec[1].singleStep(); } } else { if( mt != 0.0 ) { pspec[0].singleStep(); pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2]; } else { pspec[0].singleStep(); pspec[1].singleStep(); } } } else if( mapdesc->isSurfaceAreaSampling() ) { // t is the square root of area /* REAL msv[2], mtv[2]; REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 ); if( ms != 0.0 && mt != 0.0 ) { REAL d = 1.0 / (ms * mt); t *= M_SQRT2; REAL ds = t * ::SQRT( d * pspec[0].range[2] / pspec[1].range[2] ); REAL dt = t * ::SQRT( d * pspec[1].range[2] / pspec[0].range[2] ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2]; } else { pspec[0].singleStep(); pspec[1].singleStep(); } */ } else { pspec[0].singleStep(); pspec[1].singleStep(); } } } #ifdef DEBUG dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n", pspec[0].sidestep[0], pspec[0].sidestep[1], pspec[1].sidestep[0], pspec[1].sidestep[1], pspec[0].stepsize, pspec[1].stepsize ); #endif if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) { REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ; savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) * (2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] )); savings *= pspec[0].range[2] * pspec[1].range[2]; if( savings > mapdesc->minsavings ) { pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1; } } if( pspec[0].stepsize < pspec[0].minstepsize ) pspec[0].needsSubdivision = 1; if( pspec[1].stepsize < pspec[1].minstepsize ) pspec[1].needsSubdivision = 1; needsSampling = (needsSampling ? needsSamplingSubdivision() : 0); } void Patchspec::singleStep() { stepsize = sidestep[0] = sidestep[1] = abs(range[2]); } void Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch { stepsize = ( max >= 1.0 ) ? range[2] / max : range[2]; if (stepsize < 0.0) { stepsize = -stepsize; } sidestep[0] = sidestep[1] = minstepsize = stepsize; } int Patch::needsSamplingSubdivision( void ) { return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0; } int Patch::needsNonSamplingSubdivision( void ) { return notInBbox; } int Patch::needsSubdivision( int param ) { return pspec[param].needsSubdivision; } int Patch::cullCheck( void ) { if( cullval == CULL_ACCEPT ) cullval = mapdesc->cullCheck( cpts, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); return cullval; }